Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

نویسندگان

  • Jun Liu
  • Qiwen Qiu
  • Feng Xing
  • Dong Pan
چکیده

This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combine Use of Fly Ash and Rice Husk Ash in Concrete to Improve its Properties (RESEARCH NOTE)

This research paper describes the study of combined effect of Fly Ash (FA) and Rice Husk Ash (RHA) on properties of concrete as partial replacement of Ordinary Portland Cement (OPC). These by-products are having high pozzolanic reactivity. In this research, the composition of mix was used with 10% RHA along with 10, 20 and 30% FA as partial replacement of cement. In this study, the compressive ...

متن کامل

Durability Performance of Self Compacting Concrete Incorporating Alccofine and Fly Ash

The cost associated with the application of large volume of cement and synthetic admixtures was one of the major drawbacks of Self Compacting Concrete (SCC), which can be reduced by the use of supplementary cementitious materials (SCM). When the demand of cement reduces, the release of carbon dioxide (CO2) from cement industries will come down, which has a positive impact on global w...

متن کامل

Durable Glass Fiber Reinforced Concrete with Supplimentary Cementitious Materials

Durability of concrete structure in marine environments is a big issue for many decades due to chloride attack. Chloride penetrates the concrete structure and accelerates the corrosion process of reinforcement which decreases the life of those structures. Also shrinkage cracks in concrete play main role for chloride penetration through concrete surface.  Many researchers tried to find easy and ...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014